创新创业理论研究与实践 ›› 2024, Vol. 7 ›› Issue (22): 106-111.

• 模式探索 • 上一篇    下一篇

高等数学在人工智能中应用的探究

李静霞   

  1. 北京市丰台区职工大学,北京 100161
  • 发布日期:2025-03-27
  • 作者简介:李静霞(1978—),女,河北秦皇岛人,硕士研究生,讲师,研究方向:高等数学教育教学、成人高等教育教学。
  • 基金资助:
    北京市成人教育学会2023—2024 年度科研课题“‘家校社’协调育人机制研究与实践——以丰台职工大学家校社共育中心为例”(CRY2402)、“成人高校学历教育课程思政建设研究”(CRZ2402)

Exploration of the Application of Advanced Mathematics in Artificial Intelligence

LI Jingxia   

  1. Beijing Fengtai District Staff University, Beijing, 100161, China
  • Published:2025-03-27

摘要: 随着人工智能技术的快速发展,高等数学作为其理论基础之一,在算法开发、模型优化和数据处理等方面发挥着至关重要的作用。该文探讨高等数学在人工智能领域的具体应用,通过具体的案例揭示高等数学的概念和方法如何帮助构建复杂的机器学习模型,提高算法的效率和准确性,体现高等数学在人工智能基础研究中的核心地位,以促进高等数学与人工智能技术的高度融合和发展,为高等数学的高质量教学提供借鉴和支持。

关键词: 人工智能, 高等数学, 机器学习, 数学模型, 最小二乘法, 梯度下降法

Abstract: With the rapid development of artificial intelligence technology, advanced mathematics, as one of its theoretical foundations, plays a vital role in algorithm development, model optimization and data processing. This paper explores the specific application of higher mathematics in the field of artificial intelligence, and reveals how the concepts and methods of higher mathematics can help build complex machine learning models, improve the efficiency and accuracy of algorithms, and reflect the core position of higher mathematics in the basic research of artificial intelligence, so as to promote the high integration and development of higher mathematics and artificial intelligence technology, and provide reference and support for high-quality teaching of higher mathematics.

Key words: Artificial intelligence, Advanced mathematics, Machine learning, Mathematical modeling, Least squares, Gradient descent method

中图分类号: