创新创业理论研究与实践 ›› 2025, Vol. 8 ›› Issue (9): 1-3.

• 理论研究 •    下一篇

基于关联规则算法构建高校教学评价系统研究

刘正红, 宋云雁, 李艳荻   

  1. 吉林工商学院,吉林长春 130507
  • 出版日期:2025-05-10 发布日期:2025-08-25
  • 作者简介:刘正红(1979—),女,吉林辽源人,硕士研究生,副教授,研究方向:数据挖掘。
  • 基金资助:
    吉林省高教学会高教科研课题“基于关联规则算法构建高校教学评价系统研究”(JGJX2023D565)

Research on Constructing University Teaching Evaluation System Based on Association Rule Algorithm

LIU Zhenghong, SONG Yunyan, LI Yandi   

  1. Jilin Business of Technology College, Changchun Jilin, 130507, China
  • Online:2025-05-10 Published:2025-08-25

摘要: 随着教育技术的快速发展,传统的高校教学评价系统面临着诸多挑战,尤其是在处理大规模教育数据和提供实时反馈方面。该文通过对教师自然信息、教学过程数据、督导评分、学生反馈、课程达成度等多方信息的原始数据进行清理和预处理,使用关联规则算法完成强相关指标的筛选,为构建新型高校教学评价系统提供新思路,以提高评价的准确性及效率。该教学评价系统可以有效辅助教学管理和决策,有助于提升教学质量。

关键词: 高校教学评价, 关联规则算法, 数据挖掘, 新型评价系统, 模型构建, 教学质量提升

Abstract: With the rapid development of educational technology, the traditional teaching evaluation system in colleges and universities is facing many challenges, especially in processing large-scale educational data and providing real-time feedback. The purpose of this study is to clean and preprocess the original data of multiple sources of information, such as teachers'natural information, teaching process data, supervision scores, student feedback, and course achievement, and use association rule algorithms to complete the screening of strongly correlated indicators, providing new ideas for building a new type of teaching evaluation system in colleges and universities to improve the accuracy and efficiency of the evaluation. This teaching evaluation system can effectively assist teaching management and decision-making, and contribute to improving the quality of teaching.

Key words: Evaluation of university teaching, Association rule algorithm, Data mining, New evaluation system, Model construction, Improvement of teaching quality

中图分类号: