创新创业理论研究与实践 ›› 2025, Vol. 8 ›› Issue (13): 35-39.

• 教学革新 • 上一篇    下一篇

人工智能技术支持下机械工程专业课程教学新方法探索

张甲1, 周丽杰2, 刘铁柱1   

  1. 1.哈尔滨工业大学 机电工程学院,黑龙江哈尔滨 150001;
    2.哈尔滨理工大学 机械动力工程学院,黑龙江哈尔滨 150080
  • 发布日期:2025-08-25
  • 作者简介:张甲(1984—),男,湖北恩施人,博士研究生,教授,研究方向:微纳米制造技术。
  • 基金资助:
    黑龙江省高等教育教学改革“面向新工科的机械制造技术课程产教融合建设与改革研究”(SJGYB2024371)

Exploration of New Teaching Methods for Mechanical Engineering Courses Supported by Artificial Intelligence Technology

ZHANG Jia1, ZHOU Lijie2, LIU Tiezhu1   

  1. 1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin Heilongjiang, 150001, China;
    2. School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin Heilongjiang, 150080, China
  • Published:2025-08-25

摘要: 在全球制造业数字化转型背景下,机械工程专业教育面临着知识体系复杂、实践教学滞后、课程内容与技术发展脱节等系统性挑战。该文简析了当前机械工程专业课程教学中存在的问题,提出了“AI-机械教育融合框架”;通过动态知识图谱与自适应学习、数字孪生驱动的虚实融合实训、产业知识蒸馏与课程自进化机制3条途径解决教学存在的问题。该框架已在ANSYS知识图谱系统等案例中得到有效性验证,预计5年内建成产教融合的智能教育生态系统,推动机械工程专业教育从“知识传递”向“能力生成”范式转型,为培养适应智能制造的高端人才提供解决方案。

关键词: 人工智能技术, 机械工程专业课, 教学方法

Abstract: Under the global trend of digital transformation in manufacturing, the mechanical engineering education is confronted with systemic challenges, including an increasingly complex knowledge system, outdated practical training methodologies, and a misalignment between curricular content and technological advancements. This study has examined the prevailing pain points in mechanical engineering pedagogy and then proposed an“AI-mechanical education integration framework”to address these issues through three synergistic approaches. They are dynamic knowledge graphs coupled with adaptive learning mechanisms, digital twin-enabled virtual-physical hybrid training environments, and industrial knowledge distillation for autonomous curriculum evolution. The efficacy of the framework has been preliminarily validated through implementation cases such as the ANSYS knowledge graph system. Projected to mature within five years, this initiative aims to establish an intelligent educational ecosystem that deep integration in industry-academia collaboration, thereby facilitating a paradigm shift in mechanical engineering education from traditional knowledge transmission to competency cultivation. This transformative approach presents viable solution for developing advanced engineering talent capable of meeting the demands of smart manufacturing.

Key words: Artificial intelligence technology, Mechanical engineering courses, Teaching methods

中图分类号: