创新创业理论研究与实践 ›› 2024, Vol. 7 ›› Issue (14): 145-149.

• 模式探索 • 上一篇    下一篇

基于深度学习与嵌入式系统课程结合的教学案例实践探索

王德贵1,2, 彭圣哲1, 孙小倩1, 李艳梅1, 刘雪飞1,2, 戎小凤1, 陈璇1, 毕津顺1,2   

  1. 1.贵州师范大学 物理与电子科学学院,贵州贵阳 550001;
    2.贵州师范大学 集成电路研究院,贵州贵阳 550001
  • 出版日期:2024-07-25 发布日期:2024-11-27
  • 通讯作者: 毕津顺(1979—),男,天津人,博士研究生,教授,研究方向:集成电路、人工智能,电子邮箱: bijinshun@gznu.edu.cn。
  • 作者简介:王德贵(1982—),男,贵州遵义人,博士研究生,讲师,研究方向:集成电路、人工智能。
  • 基金资助:
    贵州师范大学校级教改项目“新工科背景下嵌入式系统课程项目化学习模式改革与实践”(GZNUXJG〔 2022006〕); 贵州省普通本科高校“金课”(一流课程)虚拟仿真实验教学“深度学习技术基础”(2023〔16〕); 教育部产学合作协同育人项目“新工科背景下本科高校产学合作协同育人改革与实践”(220906517293452)

Exploration on Teaching Reform Based on the Combination of Deep Learning and Embedded Curriculum

WANG Degui1,2, PENG Shengzhe1, SUN Xiaoqian1, LI Yanmei1, LIU Xuefei1,2, RONG Xiaofeng1, CHEN Xuan1, BI Jinshun1,2   

  1. 1. School of Physics and Electronic Science, Guizhou Normal University, Guiyang Guizhou, 550001, China;
    2. School of Integrated Circuit, Guizhou Normal University, Guiyang Guizhou, 550001, China
  • Online:2024-07-25 Published:2024-11-27

摘要: 进入人工智能时代,学生就业压力激增,客观上要求高校的课程体系做新的调整,增强人工智能专业课程的社会适应性,探索课程内容体系构建的可能路径,是人工智能专业教学改革的核心课题。为此,该文提出深度学习与嵌入式系统两门课程相结合的综合教学案例实践,在人工智能专业开设一门实践课,使用以赛促学的方式培养学生创新思维,提高学生软硬实践能力,以适应现代社会对综合型人才的需求。

关键词: 人工智能, 深度学习, 嵌入式系统, 以赛促学, 综合型, 课程

Abstract: Entering the era of artificial intelligence, students’employment pressure surges, and objectively requires that the curriculum system of colleges and universities has to make new adjustments, enhance the social adaptability of artificial intelligence courses, and explore the possible path of course content system construction, which is the core issue of the teaching reform of artificial intelligence majors. Therefore, this paper proposes to combine the two courses of deep learning and embedded system with comprehensive teaching case practice, and set up a practice course in artificial intelligence major to cultivate students' innovative thinking and improve students'hard and soft practical ability, so as to meet the needs of modern society for comprehensive talents.

Key words: Artificial intelligence, Deep learning, Embedded, Promoting learning by competition, Synthesizing type, Course

中图分类号: