创新创业理论研究与实践 ›› 2021, Vol. 4 ›› Issue (10): 159-161.

• 创新方法 • 上一篇    下一篇

高职院校贫困生判定方法及其认同度调查——以宁波高职院校为例

石春宇1, 程利江2, 罗志强3   

  1. 1.浙江医药高等专科学校,浙江宁波 315000;
    2.宁波卫生职业技术学院,浙江宁波 315000;
    3.宁波职业技术学院,浙江宁波 315000
  • 出版日期:2021-05-25 发布日期:2021-09-10
  • 作者简介:石春宇(1987-),男,河北唐山人,硕士,讲师,研究方向:帮困助学及创新创业。
  • 基金资助:
    浙江医药高等专科学校2017年校级课题“高校贫困学生认定体系问题研究”(ZPCSR2017017)与浙江医药高等专科学校党建课题“新时代高职院校扩招后防范宗教渗透问题研究”(DS201905)的研究成果

A Survey on the Determination Method and Identification Degree of Poor Students in Higher Vocational Colleges——A Case Study of Ningbo Higher Vocational Colleges

SHI Chunyu1, CHENG Lijiang2, LUO Zhiqiang3   

  1. 1. Zhejiang Pharmaceutical College, Ningbo Zhejiang, 315000, China;
    2. Ningbo College of Health Sciences, Ningbo Zhejiang, 315000, China;
    3. Ningbo Polytechnic, Ningbo Zhejiang, 315000, China
  • Online:2021-05-25 Published:2021-09-10

摘要: 随着职业教育快速发展及百万扩招政策的实施,高职院校贫困生人数大幅度增加,做好国家精准扶贫政策在高职院校的延伸,其关键就是精准地做好贫困生的认定工作。该文采用随机分层抽样调查法,运用SPSS软件对反馈数据进行分析,调查高职院校现行贫困生判定方法的认同度。在基于信息有效性、准确性、全面性、可量化性的基础上找到公认的几种判定方法,并通过数据的分析为以后贫困生的认定工作提供相应的建议。

关键词: 高职院校, 贫困生判定, 认同度, 调查

Abstract: With the rapid development of vocational education and the implementation of the policy of expanding enrollment of millions, the number of poor students in higher vocational colleges has increased significantly. The key to do a good job in the extension of national targeted poverty alleviation policy in higher vocational colleges is to accurately identify poor students. This paper adopts the random stratified sampling survey method, analyzes the feedback data with SPSS software, and investigates the identification degree of the current poor students' judgment method in higher vocational colleges. Based on the effectiveness, accuracy, comprehensiveness and quantifiable of information, this paper finds several commonly recognized judgment methods, and provides corresponding suggestions for the identification of poor students through data analysis.

Key words: Higher vocational colleges, Poor students' judgment, Identification degree, Investigation

中图分类号: