创新创业理论研究与实践 ›› 2025, Vol. 8 ›› Issue (20): 156-158.

• 创新方法 • 上一篇    下一篇

生成式人工智能助力大学生职业生涯规划课程教学的路径探索

万彦杉   

  1. 四川文理学院,四川达州 635002
  • 出版日期:2025-10-25 发布日期:2025-11-18
  • 作者简介:万彦杉(1996—),女,四川达州人,硕士研究生,研究实习员,研究方向:生涯规划。
  • 基金资助:
    2024—2026年四川省高等教育人才培养质量和教学改革项目“川东片区高校大学生职业生涯规划与就业能力培育模式研究”(JG2024-1122)

Path of Generative Artificial Intelligence Assisting College Students in Career Planning Course Teaching

WAN Yanshan   

  1. Sichuan University of Arts and Science, Dazhou Sichuan, 635002, China
  • Online:2025-10-25 Published:2025-11-18

摘要: 当前大学生职业生涯规划课程存在教学方法单一、资源更新滞后、个性化指导不足等问题。生成式人工智能凭借内容生成能力与交互特性,为该课程的教学改革提供了新的突破口。该文通过探讨生成式人工智能在课程设计、资源开发、互动教学等环节的应用路径,构建一个智能驱动、个性适配、协同创新的课程教学框架,为大学生职业生涯规划课程的创新发展提供理论参考与实践策略,确保大学生在多模态教学情境中获得更好的学习体验,以此为大学生未来就业以及制定个人职业目标提供明确指引,满足大学课程教学优化的需求。

关键词: 生成式人工智能, 大学生职业生涯规划课程, 教学路径, 个性化学习, 多模态情境, 智能资源

Abstract: The current career planning courses for college students have problems, such as a single teaching method, lagging resource updates, and insufficient personalized guidance. Generative artificial intelligence, with its content generation ability and interactive characteristics, provides a new breakthrough for the teaching reform of this course. The article explores the application path of generative artificial intelligence in curriculum design, resource development, interactive teaching, and other aspects, and constructs an intelligent driven, personalized, and collaborative innovation curriculum teaching framework. It provides theoretical references and practical strategies for the innovative development of college students'career planning courses, ensuring that college students have a better learning experience in multimodal teaching contexts, resource utilization, and teacher-student interaction scenes. This provides clear guidance for college students'future employment and the formulation of personal career goals, meeting the practical needs of optimizing university curriculum teaching.

Key words: Generative artificial intelligence, College students career planning course, Teaching path, Personalized learning, Multimodal context, Intelligent resources

中图分类号: